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Numerical simulations of fluid flow in domains containing moving rigid objects or boundaries are still 
challenging when meshes have to be adapted and periodically regenerated. A numerical strategy that 
falls into the general category of Arbitrary Lagrangian–Eulerian (ALE) methods is being developed. The 
method is based on a fixed-mesh that is locally modified both in space and time to describe the moving 
interfaces that are allowed to move independently of the mesh. This results in a fully robust formulation 
capable of calculating in irregular meshes that contain moving devices of complex geometry and free of 
mesh entanglement problems. The present work constitutes the first stage in the development of a 3D 
model to interface with the new KIVA-hpFE simulator. The method’s accuracy has been assessed in 2D 
using a case that has an analytical solution.

T he design of internal combustion engines presents significant 
challenges to the optimization of shape, size, efficiency, power 

output, environmental impact, etc. Numerical simulations have provided 
an excellent tool for analysis prior to prototype building and have been 
used in the design of internal combustion engines for some time now 
[1,2]. The numerical models used to simulate flow in domains that 
physically change with time are for the most part based on ALE methods 
[3,4]. These methods, based on finite differences or finite elements 
formulations, are combined with moving mesh schemes in which the 
mesh is deformed or regenerated as the domain evolves to adapt to the 
changing geometry [5,6].

When the meshes are adapted to fit the evolving geometry they become 
degraded to the point where they must be regenerated, an expensive 
computational process, and they often become unusable, thus requiring 
the program operator’s intervention. Our work is aimed at eliminating 
these problems by implementing an ALE method based on the use of 
a fixed, structured or unstructured mesh that covers the complete (or 
maximum) domain occupied by the fluid at any time in the simulation and 
that remains fixed throughout the calculation. The moving interfaces are 
described using sets of marker points that define the different moving 
bodies or boundaries. The marker points can move freely over the basic 
mesh with a velocity that may be prescribed or be part of the calculated 
solution [7]. Figure 1 illustrates a mesh and interfaces configuration. At 
each time step in the calculation the elements intersected by one of the 
moving interfaces are subdivided to fit the boundary with a piecewise 
linear curve such that the computational nodes always remain on the 
elements sides. The modified mesh is used to calculate the flow in the 
portion of the domain occupied by fluid only once for that time and 
interface position. At the next time step the interfaces are advanced, 
the new intersections with the mesh are calculated, and a new local 

adaptation performed. Once the moving liquid-solid interface has gone 
through the stationary element, the element recovers its original form. 
Therefore, the mesh adaptation is performed only in those elements 
intersected by an interface and is local both in space and time. As a 
result, the method requires a minimal amount of interpolation and there 
are a fixed number of possible modifications to the intersected elements, 
three in the 2D case when quadrilateral elements are used and seven in 
the 3D case when hexahedrons are used. The situation is even simpler if 
the model is based on triangles in 2D and tetrahedrons in 3D, requiring 
only one kind of modification for 2D triangles and four in the case of 
four-node tetrahedrons. The use of this strategy eliminates the problem 
of maintaining the mesh quality and results in a robust formulation on 
arbitrary geometrical configurations.

At this time, the 2D four-node bilinear isoparametric element has been 
implemented to test the ideas, and the interface-moving algorithm has 
been combined with a first-order-in-time fractional step (projection) 
formulation [8] for incompressible flow. The accuracy of the model has 
been tested using an exact analytical solution to the case of 2D flow 
between two parallel plates separating with a prescribed velocity [9]. The 
error measures have been chosen by averaging over the computational 
nodes contained on a fixed a portion of the domain in order to obtain an 
estimate of the error at each time step, and then averaging those errors 
over a fixed-time interval. This results in one number representing 
the error in a computation for a specific spatial mesh. This process is 
repeated for two additional meshes, each refined so that the mesh size 
parameter is one half of the previous one, to estimate the convergence 
rate of the method as a function of mesh size. The results show the 
expected second-order convergence of the velocity and first-order 
convergence of the pressure as a function of the mesh size.

Fig. 1. Schematic of a rectangular 
domain discretized with a uniform mesh 
that contains a fluid phase (B) and three 
types of moving interfaces defined by 
marker points. The arrows indicate the 
positive vector normal to the interface.
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An example that illustrates the capability of the 
method to model the interface’s motion is given 
in Fig. 2. This calculation has been designed to 
show the effectiveness of the method to model 
the geometrical changes due to the moving 
interfaces; it does not include combustion, but 
it does consider 2D laminar incompressible flow 
at low Reynolds number. The figure shows a 2D 
idealization of a piston chamber and a cylinder 
head that moves in the y direction according 
to  y(t) = y(0) + 2.5(1 +sin(t - π/2)), so the 
stroke of the piston is 5 cm. Figures 3 and 4 
show the position of the piston, the flow field, 
and the pressure field at two instants; in Fig. 3 
it is starting to move down after 3.5 seconds of 
simulation; after reaching its maximum height, 

the left (outlet) valve is closed and fluid enters the region 
through the right (inlet) valve. In Fig. 4 at 6.55 seconds 
the piston is initiating upwards motion and the flow leaves 
the domain through the right valve. The simulation was 
performed in 13,100 time steps of equal size to reach  

6.55 seconds. The total CPU time required 
for this run in a 2009 Dell Optiplex 960 PC 
with a 3-MHz, ×86 Intel processor and  
1.5 GB of physical memory is 3.79 minutes.

So far the present work has been restricted 
to laminar incompressible flow in two space 
dimensions in order to verify feasibility and 
accuracy of the method to model moving 
interfaces. The same methodology can be 
applied directly to high Reynolds number 
compressible and turbulent flows. The 
extension of the method to three space 
dimensions is currently under development.

For more information contact David Carrington at 
dcarring@lanl.gov.
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Fig. 2. Finite element mesh for 
the simulation of an engine piston 
chamber showing valve openings 
in black. The geometry and initial 
position of the top of the cylinder 
head is shown in blue at the 
bottom.

Fig. 4. Velocity and pressure after 
6.55 seconds, the piston has just 
reversed its motion and is moving 
up. The inlet valve is closed and 
the outlet valve on the left is open. 
Maximum velocity is 7.7 cm/s.

Fig. 3. Velocity and pressure after 
3.5 seconds when the piston is 
moving back down and the inlet 
valve on the right-hand side is 
open. Maximum velocity is  
4.4 cm/s.


